Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformation ; 19(13): 1377-1382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38415031

RESUMO

Four surgical treatment modalities namely cryosurgery, scalpel and blade surgery, diode LASER surgery and CO2 LASER surgery in the management of oral potentially malignant disorders (OPMDs) in terms of healing outcomes post operatively and recurrence is evaluated. The study included sixty outpatients whose biopsies revealed OPMDs (oral lichen planus, homogeneous leukoplakia, non-homogenous leukoplakia and erythroplakia). There is decrease in post-operative pain and oedema in all four treatment categories at one week follow up and two week follow up. It was observed that pain was low in cryosurgery treatment category at day of surgery as well as at one week of follow up as compared to diode LASER and CO2 LASER. Observations from the study highlights that all four surgical modalities used in this study were effective for treatment of OPMDs, and the overall summation of the results of the study showed that cryotherapy seems to offer better clinically significant results than laser therapy.

2.
FEMS Yeast Res ; 21(8)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34894216

RESUMO

Histone tail residues drive many biological processes by regulating genome-wide transcription. Functions of histone H3 and H4 tail residues in stress-responsive gene transcriptional programs have been extensively studied. The H2A tail residues have been shown to regulate DNA damage repair and oxidative stress response, but the involvement of N-terminal tail of H2A (H2ANtT) in proteostasis regulation is unknown. The unfolded protein response pathway (UPR) is an essential mechanism adopted by cells to prevent protein toxicity in response to ER stress. The disturbance in ER can occur by various factors such as heat stress, redox imbalance, exposure to xenobiotics and metals. Copper is utilized as a cofactor by cellular enzymes, but excessive copper affects ER homeostasis. We found that cells lacking 1-20 residues of H2ANtT are intolerant to copper stress, owing to the accumulation of misfolded proteins in the mutant cells. H2A 1-20 truncation also reduces the physiological UPR, and copper exposure further aggravates this effect. Furthermore, the expression of a spliced version of HAC1 mRNA in H2A∆(1-20) cells, encoding the downstream transcription factor of UPR signalling, rescues their growth under copper stress. Altogether these results provide evidence that H2ANtT reduces copper-induced ER stress by regulating UPR signalling.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cobre/metabolismo , Cobre/toxicidade , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
3.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454103

RESUMO

The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their function has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement in other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies the promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes induction of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/genética
4.
Biochem Cell Biol ; 99(5): 636-644, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33843274

RESUMO

Histone residues play an essential role in the regulation of various biological processes. In the present study, we utilized the H3/H4 histone mutant library to probe the functional aspects of histone residues in amino acid biosynthesis. We found that the histone residue H3R72 plays a crucial role in the regulation of isoleucine biosynthesis. Substitution of the arginine residue (H3R72) of histone H3 to alanine (H3R72A) renders yeast cells unable to grow in minimal medium. Histone mutant H3R72A requires external supplementation of either isoleucine, serine, or threonine for growth in minimal medium. We also observed that the H3R72 residue and leucine amino acid in synthetic complete medium might play a crucial role in determining the intake of isoleucine and threonine in yeast. Furthermore, gene deletion analysis of ILV1 and CHA1 in the H3R72A mutant confirmed that isoleucine is the sole requirement for growth in minimal medium. Altogether, we have identified that histone H3R72 residue may be crucial for yeast growth in minimal medium by regulating isoleucine biosynthesis through the Ilv1 enzyme in the budding yeast Saccharomyces cerevisiae.


Assuntos
Alanina/metabolismo , Histonas/metabolismo , Isoleucina/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Treonina Desidratase/metabolismo , Arginina/genética , Arginina/metabolismo , Histonas/genética , Mutação
5.
Mol Cell Biol ; 41(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33257505

RESUMO

Copper homeostasis is crucial for various cellular processes. The balance between nutritional and toxic copper levels is maintained through the regulation of its uptake, distribution, and detoxification via antagonistic actions of two transcription factors, Ace1 and Mac1. Ace1 responds to toxic copper levels by transcriptionally regulating detoxification genes CUP1 and CRS5 Cup1 metallothionein confers protection against toxic copper levels. CUP1 gene regulation is a multifactorial event requiring Ace1, TATA-binding protein (TBP), chromatin remodeler, acetyltransferase (Spt10), and histones. However, the role of histone H3 residues has not been fully elucidated. To investigate the role of the H3 tail in CUP1 transcriptional regulation, we screened the library of histone mutants in copper stress. We identified mutations in H3 (K23Q, K27R, K36Q, Δ5-16, Δ13-16, Δ13-28, Δ25-28, Δ28-31, and Δ29-32) that reduce CUP1 expression. We detected reduced Ace1 occupancy across the CUP1 promoter in K23Q, K36Q, Δ5-16, Δ13-28, Δ25-28, and Δ28-31 mutations correlating with the reduced CUP1 transcription. The majority of these mutations affect TBP occupancy at the CUP1 promoter, augmenting the CUP1 transcription defect. Additionally, some mutants displayed cytosolic protein aggregation upon copper stress. Altogether, our data establish previously unidentified residues of the H3 N-terminal tail and their modifications in CUP1 regulation.


Assuntos
Cobre/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , Metalotioneína/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Cobre/farmacologia , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Homeostase/genética , Metalotioneína/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Biochem Pharmacol ; 180: 114200, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32805211

RESUMO

The eukaryotic genetic material is packaged in the form of chromatin by wrapping DNA around nucleosomes. Cells maintain chromatin in a dynamic state by utilising various ATP-dependent chromatin remodelling complexes which can induce structural transformations in the chromatin. All chromatin remodelers contain an ATP hydrolysing-DNA translocase motor which facilitates nucleosomal DNA translocation. By DNA translocation ISWI and CHD subfamily remodelers slide nucleosomes and arrange them in a regularly spaced array. While SWI/SNF subfamily remodelers evict or displace nucleosomes from chromatin, which promotes recruitment of transcription machinery and DNA repair factors on the DNA. Besides DNA translocation, ISWI, CHD and INO80 subfamily remodelers escort nucleosome organisation and editing. In this review; we discuss different mechanisms by which chromatin remodelers regulate chromatin accessibility, nucleosome assembly and nucleosome editing. We attempt to elucidate how their action mediates various cellular and developmental processes, and their deregulation leads to disease pathogenesis. We emphasised on their role in cancer progression and potential therapeutic implications of these complexes. We also described the drugs and strategies which are being developed to target different subunits of remodelling complexes, histone modifying enzymes and polycomb repressive complex. This includes ATPase inhibitors, EZH2 (enhancer of zeste homolog 2) inhibitors, BET (bromodomain and extra terminal) inhibitors, PROTAC (proteolysis targeting chimaera) and inhibitors of protein-protein interaction.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Montagem e Desmontagem da Cromatina/fisiologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Estrutura Secundária de Proteína , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo
7.
FEBS J ; 287(14): 3024-3041, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31846549

RESUMO

Chromatin remodelling complexes are multi-subunit assemblies, each containing a catalytic ATPase and translocase that is capable of mobilizing nucleosomes to alter the chromatin structure. SWI/SNF remodelling complexes with higher DNA translocation efficiency evict histones or slide the nucleosomes away from each other making DNA accessible for transcription and repair machinery. Chromatin remodelling at the promoter of stress-responsive genes by SWI/SNF becomes necessary during the heat and proteotoxic stress. While the involvement of SWI/SNF in transcription of stress-responsive genes has been studied extensively, the regulation of proteostasis by SWI/SNF is not well understood. This study demonstrates critical functions of SWI/SNF in response to cadmium-induced proteotoxic stress. Deletion of either ATPase-translocase subunit of SWI/SNF complex (Swi2/Snf2) or a regulatory subunit Swi3 abrogates the clearance of cadmium-induced protein aggregates. Our results suggest that Snf2 and Swi3 regulate the protein folding in endoplasmic reticulum (ER) that reduces the chances of forming unfolded protein aggregates under the proteotoxic stress of cadmium. The Ire1-mediated unfolded protein response (UPR) maintains ER homeostasis by upregulating the expression of chaperones and ER-associated degradation (ERAD) components. We found that Snf2 maintains normal oxidative environment essential for Ire1 activity. Deletion of SNF2 reduced the Ire1 activity and UPR, indicating involvement of Snf2 in Ire1-mediated ER proteostasis. Together, these findings suggest that SWI/SNF complex regulates ER homeostasis and protein folding crucial for tolerating proteotoxic stress.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Citoplasma/metabolismo , Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Histonas , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Environ Geochem Health ; 40(5): 2205-2222, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29603086

RESUMO

This study describes spatiotemporal patterns from October 2015 to September 2016 for PM2.5 mass and carbon measurements in rural (Kosmarra), urban (Raipur), and industrial (Bhilai) environments, in Chhattisgarh, Central India. Twenty-four-hour samples were acquired once every other week at the rural and industrial sites. Twelve-hour daytime and nighttime samples were acquired either a once a week or once every other week at the urban site. Each site was equipped with two portable, battery-powered, miniVol air samplers with PM2.5 inlets. Annual average PM2.5 mass concentrations were 71.8 ± 27 µg m-3 at the rural site, 133 ± 51 µg m-3 at the urban site, and 244.5 ± 63.3 µg m-3 at the industrial site, ~ 2-6 times higher than the Indian Annual National Ambient Air Quality Standard of 40 µg m-3. Average monthly nighttime PM2.5 and carbon concentrations at the urban site were consistently higher than those of daytime from November 2015 to April 2016, when temperatures were low. Annual average total carbon (TC = OC + EC) at the urban (46.8 ± 23.8 µg m-3) and industrial (98.0 ± 17.2 µg m-3) sites also exceeded the Indian PM2.5 NAAQS. TC accounted for 30-40% of PM2.5 mass. Annual average OC ranged from 17.8 ± 6.1 µg m-3 at the rural site to 64 ± 9.4 µg m-3 at the industrial site, with EC ranging from 4.51 ± 2.2 to 34.01 ± 7.8 µg m-3. The average OC/EC ratio at the industrial site (1.88) was 18% lower than that at the urban site and 52% lower than that at the rural site. OC was attributed to 43.0% of secondary organic carbon (SOC) at the rural site, twice that estimated for the urban and industrial sites. Mortality burden estimates for PM2.5 EC are 4416 and 6196 excess deaths at the urban and industrial sites, respectively, during 2015-2016.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Baías , Índia , Tamanho da Partícula , Estações do Ano , Temperatura
9.
Sci Total Environ ; 627: 1137-1145, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426131

RESUMO

To develop coarse particle (PM10-2.5, 2.5 to 10µm) chemical source profiles, real-world source sampling from four domestic cooking and seven industrial processing facilities were carried out in "Raipur-Bhilai" of Central India. Collected samples were analysed for 32 chemical species including 21 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, V, and Zn) by atomic absorption spectrophotometry (AAS), 8 water-soluble ions (Na+, K+, Mg2+, Ca2+, Cl-, F-, NO3-, and SO42-) by ion chromatography, ammonium (NH4+) by spectrophotometry, and carbonaceous fractions (OC and EC) by thermal/optical transmittance. The carbonaceous fractions were most abundant fraction in household fuel and municipal solid waste combustion emissions while elemental species were more abundant in industrial emissions. Most of the elemental species were enriched in PM2.5 (<2.5µm) size fraction as compared to the PM10-2.5 fraction. Abundant Ca (13-28%) was found in steel-rolling mill (SRM) and cement production industry (CPI) emissions, with abundant Fe (14-32%) in ferro-manganese (FEMNI), steel production industry (SPI), and electric-arc welding emissions. High coefficients of divergence (COD) values (0.46 to 0.88) among the profiles indicate their differences. These region-specific source profiles are more relevant to source apportionment studies in India than profiles measured elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...